Submodular Optimization under Noise

نویسندگان

  • Avinatan Hassidim
  • Yaron Singer
چکیده

We consider the problem of maximizing a monotone submodular function under noise, which to the best of our knowledge has not been studied in the past. There has been a great deal of work on optimization of submodular functions under various constraints, with many algorithms that provide desirable approximation guarantees. However, in many applications we do not have access to the submodular function we aim to optimize, but rather to some erroneous or noisy version of it. This raises the question of whether provable guarantees are obtainable in presence of error and noise. We provide initial answers, by focusing on the question of maximizing a monotone submodular function under a cardinality constraint when given access to a noisy oracle of the function. We show that: • For a cardinality constraint k ≥ 2, there is an approximation algorithm whose approximation ratio is arbitrarily close to 1− 1/e; • For k = 1 there is an approximation algorithm whose approximation ratio is arbitrarily close to 1/2 in expectation. No randomized algorithm can obtain an approximation ratio better than 1/2 + o(1) in expectation; • If the noise is adversarial, no non-trivial approximation guarantee can be obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

Structured Convex Optimization under Submodular Constraints

A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...

متن کامل

Subset Selection under Noise

The problem of selecting the best k-element subset from a universe is involved in many applications. While previous studies assumed a noise-free environment or a noisy monotone submodular objective function, this paper considers a more realistic and general situation where the evaluation of a subset is a noisy monotone function (not necessarily submodular), with both multiplicative and additive...

متن کامل

Adaptive Submodular Optimization under Matroid Constraints

Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on obser...

متن کامل

Selecting Diverse Features via Spectral Regularization

We study the problem of diverse feature selection in linear regression: selecting a small subset of diverse features that can predict a given objective. Diversity is useful for several reasons such as interpretability, robustness to noise, etc. We propose several spectral regularizers that capture a notion of diversity of features and show that these are all submodular set functions. These regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017